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Several lines of evidence implicate the striatum in learning from experience on the basis of positive and negative feedback.

However, the necessity of the striatum for such learning has been difficult to demonstrate in humans, because brain damage is

rarely restricted to this structure. Here we test a rare individual with widespread bilateral damage restricted to the dorsal

striatum. His performance was impaired and not significantly different from chance on several classic learning tasks, consistent

with current theories regarding the role of the striatum. However, he also exhibited remarkably intact performance on a different

subset of learning paradigms. The tasks he could perform can all be solved by learning the value of actions, while those he

could not perform can only be solved by learning the value of stimuli. Although dorsal striatum is often thought to play a

specific role in action-value learning, we find surprisingly that dorsal striatum is necessary for stimulus-value but not action-

value learning in humans.
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Introduction
A wealth of research links the striatum to learning on the basis of

positive and negative feedback (Poldrack and Packard, 2003;

Squire, 2009). Theoretical proposals framed around reinforcement

learning suggest that the dorsal and ventral striatum are used to

learn the value of actions and states, respectively (Houk et al.,

1995; Niv, 2009), and detailed computational models describe

how such quantities could be learned from specific dopaminergic

inputs to the direct and indirect pathways (Cohen and Frank,

2009; Morita et al., 2012). Neurophysiological studies in animal

models identify action-value and value-learning signals, frequently

in dorsal striatum (Samejima et al., 2005; Lau and Glimcher, 2008;

Kable and Glimcher, 2009; Balleine and O’Doherty, 2010; Ding

and Gold, 2010; Haber and Knutson, 2010; Cai et al., 2011).

Functional imaging studies provide converging evidence in

humans, finding value and feedback signals in the striatum

during reward learning, category learning and decision-making

(Poldrack et al., 2001; Poldrack and Packard, 2003; Kable and

Glimcher, 2009; Balleine and O’Doherty, 2010; Haber and

Knutson, 2010; Davis et al., 2012). However, these studies only

demonstrate the involvement of the striatum in learning, not the

necessity of the striatum for learning. The necessity of striatum for

learning in humans has been inferred from studies of individuals

with Parkinson’s disease, who are impaired at implicit category

learning and learning from positive feedback (Knowlton et al.,
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1996; Frank et al., 2004; Shohamy et al., 2004; Rutledge et al.,

2009). However, Parkinson’s disease does not affect the striatum

directly but instead affects the midbrain dopamine neurons that

innervate the striatum. Brain damage that is both extensive and

restricted to the striatum is extremely rare. Here we test an indi-

vidual (Patient XG) with a rare pattern of brain damage, which

was restricted to the dorsal striatum bilaterally, to evaluate the

necessity of the dorsal striatum for learning in humans.

Materials and methods

Participants
At the time of testing, Patient XG was a 52-year-old, right-handed

male who had suffered from hypoxic ischaemic damage following car-

diac arrhythmia 7 years previously. MRI revealed damage in the caud-

ate and putamen bilaterally (Fig. 1). Ventral sections of the striatum

were spared, including the nucleus accumbens, but no sparing was

apparent in dorsal striatum.

One of the authors (A.C.) has followed Patient XG clinically. At

initial presentation, Patient XG was cortically blind. His vision started

to recover within days and was completely normal within a few

months. He did not show signs of amnesia, aphasia, impairments in

attention or emotion, or changes in personality. He has demonstrated

prominent signs of basal ganglia dysfunction since his original injury.

These signs include rigidity, marked dystonic posturing (Supplementary

Fig. 1), akinesia (worse in his left arm), splaying of his left toes, hypo-

mimia, and slow and rigid gait.

In a recent neuropsychological evaluation (Supplementary Table 1),

Patient XG did not demonstrate evidence of dementia or general cog-

nitive impairment. He demonstrated normal visual acuity, contrast sen-

sitivity, and colour vision. He performed normally on tests of

intermediate vision, spatial location, and visuospatial memory. He

also performed normally on tests of executive function.

We tested 11 age- and education-matched controls with no history

of neurological or psychiatric disorders [seven females; one left-

handed; mean age � standard deviation (SD), 56.4 � 4.0 years;

education, 14 � 1.3 years]. To control for Patient XG’s motor impair-

ments, all participants responded with their right hand only.

Correspondingly, Patient XG’s reaction times evidenced little slowing

relative to controls (Supplementary Fig. 2).

Tasks
Based on current theories of striatal function, we initially hypothesized

that Patient XG would be impaired on all tasks that involve learning

from positive and negative feedback. To test this hypothesis, we ex-

tensively characterized participants’ performance on a battery of seven

learning tasks in 8 h of testing across 4 days (total n = 5972 trials,

Supplementary Table 2, see Supplementary material for task details):

(i) The Weather Prediction Task (n = 400 trials) is a probabilistic

classification task (Knowlton et al., 1996; Shohamy et al.,

2004). Participants predict ‘rain’ or ‘shine’ based on combin-

ations of four learned probabilistic cues.

(ii) The Probabilistic Selection Task (n = 960 training trials, n = 132

test trials) tests learning from positive versus negative feedback

(Frank et al., 2004). In the training phase, participants see three

different pairs of cues. One cue in each pair is more likely to be

associated with positive feedback. In the testing phase,

participants choose without feedback between novel pairs invol-

ving either the cue most associated with positive feedback or the

cue most associated with negative feedback.

(iii) The Crab Game (n = 640 trials) is a dynamic foraging task invol-

ving variable-ratio schedules (Rutledge et al., 2009). Participants

select in which of two ‘traps’ to find ‘crabs’.

(iv) The Fish Game is a probabilistic reversal learning task (n = 640

trials). Participants select in which of two ‘lakes’ to ‘fish’.

(v) The Bait Game (n = 640 trials) is a variant of the Fish Game in

which participants learn to avoid losses rather than collect gains.

(vi) Stimulus-value learning (n = 640 trials) is a reversal learning task

that can only be solved by learning stimulus values (Glascher

et al., 2009). Participants choose between two fractal stimuli

that are probabilistically rewarded at different rates.

(vii) Action-value learning (n = 640 trials) is an analogous reversal

learning task that can only be solved by learning action values

(Glascher et al., 2009). Participants choose between two actions

of a trackball mouse that are probabilistically rewarded at differ-

ent rates.

Three of these tasks can only be solved by learning stimulus values

(Weather Prediction Task, Probabilistic Selection Task, Stimulus-value

learning), one task can only be solved by learning action values

(Action-value learning), and three tasks can be solved using either

stimulus values or action values (Crab, Fish and Bait Games). For

each task, we collected data in two separate sessions on two different

days, with new stimuli for each session. As incentive, participants

earned additional performance-based compensation for one randomly

selected task each session. This investigation was approved by the

Institutional Review Board at the University of Pennsylvania and all

participants gave informed consent.

Statistics
We compared performance against chance using binomial probability,

Patient XG’s performance against matched controls using a modified

t-test specifically designed for case studies (Crawford and Howell,

1998), and fit reinforcement learning models to behaviour using opti-

mization routines in MATLAB. See Supplementary material for details.

Results

Weather Prediction Task
Patient XG chose the more likely option 45.0% of the time, which

was slightly worse than chance performance (z = –1.63,

P = 0.051). In contrast, controls chose the more likely option

59.2 � 7.4% of the time (z43.09, P5 0.001). The difference

between Patient XG and controls was statistically significant

[t(10) = –1.83, P = 0.049; Fig. 2A].

Probabilistic Selection Task
During the training phase, which required participants to learn

the values of the specific stimuli, Patient XG was able to select

the option with the higher reward probability more often than

chance (z43.09, P50.001). However, his performance was im-

paired relative to controls, especially for choice pairs with the

most distinguishable probabilities [all trials: Patient XG = 58.0%,

controls = 72.4 � 7.2%, t(10) = –1.92, P = 0.042; AB trials, where
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Figure 2 (A) Patient XG and healthy controls’ performance in the Weather Prediction Task. Plotted is the proportion of times participants

chose the more likely option (‘rain’ or ‘shine’) given the cue combination. (B) Patient XG and healthy controls’ performance in the training

phase of the Probabilistic Selection Task. Plotted is the proportion of times participants chose the higher rewarded option (A, C and E) from

each pair (AB, CD and EF) and across all pairs during the training phase. (C) Patient XG and healthy controls’ performance in the test phase

of the Probabilistic Selection Task. Plotted is the proportion of times participants choose A from novel pairs, avoid B from novel pairs, and

choose the highest stimulus value across all novel pairs. In A–C, error bars denote standard deviation and asterisks denote P50.05. (D, E

and F) Patient XG and healthy controls’ performance for Crab Game, Fish Game, and Bait Game, respectively. Plotted is the probability of

choosing the richer option across the course of a block (averaging over 16 total blocks per task, representing 14 total transitions). Vertical

dashed line denotes block transition. Horizontal line denotes chance performance. Data smoothing kernel = 11.

Figure 1 MRI from the acute phase of Patient XG’s injury (top row) and more recently (bottom row). Three different contrasts (FLAIR, T2,

T1 with gadolinium) are shown. Going left to right, axial images progress from inferior to superior and coronal images progress from

posterior to anterior. In the acute images, contrast enhancement can be seen in the caudate and putamen bilaterally, indicative of recent

injury (i.e. inflammation and breakdown of the blood–brain barrier). More recent images show pronounced loss of tissue in the caudate

and putamen bilaterally. Both sets of images show sparing of ventral regions of the striatum, including the nucleus accumbens.
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A is rewarded with 80% probability: Patient XG = 58.1%, con-

trols = 80.5 � 12.1%, t(10) = –1.76, P = 0.054; CD trials, where

C is rewarded with 70% probability: Patient XG = 53.8%, con-

trols = 73.6 � 8.6%, t(10) = –2.21, P = 0.026; Fig. 2B]. Critically,

however, Patient XG did not solve the task the same way con-

trols do. He was only more likely to repeat choices of the higher

rewarded option when stimuli were presented in the exact same

left-right configuration (Supplementary Fig. 3), a pattern consist-

ent with action-value but not stimulus-value learning. During the

test phase, which required participants to make novel choices

based on learned stimulus values, Patient XG did not choose

the highest reward probability option from novel pairs more

often than chance (45.8%, z = –0.90, P = 0.18), nor did he

avoid the lowest reward probability option from novel pairs

more often than chance (52.1%, z = 0.13, P = 0.55). Although

controls did choose the highest reward probability option

(67.4 � 15.6%) and avoid the lowest reward probability option

(72.3 � 15.6%) at greater than chance levels (both z43.09,

P5 0.001), variability was high enough that the difference

between Patient XG and controls did not reach statistical signifi-

cance [all trials combined: t(10) = –1.70, P = 0.06; choose high-

est: t(10) = –1.33, P = 0.11; avoid lowest: t(10) = �1.24,

P = 0.12; Fig. 2C].

Probabilistic reversal learning tasks
In contrast to his impaired performance on the Weather Prediction

and Probabilistic Selection Tasks, Patient XG performance in the

Crab, Fish and Bait Games was at above-chance levels (all

z43.09, P50.001, Fig. 2D–F). For all three tasks, there was

no significant difference between Patient XG and healthy control

participants [Crab Game: Patient XG = 65.5%, con-

trols = 60.0 � 4.0%, t(10) = 1.30, P = 0.89; Fish Game: Patient

XG = 66.1%, controls = 65.8 � 6.3%, t(10) = 0.04, P = 0.52; Bait

Game: Patient XG = 64.7%, controls = 73.5 � 9.4%, t(10) =

�0.89, P = 0.20].

Action-based and stimulus-based
reversal learning tasks
One hypothesis, which reconciles Patient XG’s impaired perform-

ance on the Weather Prediction and Probabilistic Selection Tasks

with his intact performance on the Crab, Fish and Bait Games, is

that he can learn the value of actions but not the value of stimuli.

(An alternative, that Patient XG has problems on tasks without

reversals, is less consistent with the data, Supplementary Fig. 4.)

This hypothesis can be evaluated directly by comparing Patient

XG’s performance in two tasks that can only be solved by learning

stimulus values or action values, respectively. In stimulus-value

learning, Patient XG’s performance was not different from

chance (z = 0.36, P = 0.64, Fig. 3A) and was significantly lower

than control participants [Patient XG = 51.1%, con-

trols = 65.7 � 6.9%, t(10) = –2.03, P = 0.035]. In contrast,

Patient XG chose the richer action at above-chance levels in

action-value learning (z43.09, P50.001, Fig. 3C) and his per-

formance was not significantly different from control participants

[Patient XG = 59.2%, controls = 67.4 � 6.9%, t(10) = –1.14,

P = 0.14].

For both tasks, we fit a regression model estimating the influ-

ence of past rewards and past choices on current choices (Fig. 3B

and D). The signature of reinforcement learning in this model is an

exponential decline in the influence of past rewards. While control

participants exhibited this pattern in stimulus-value learning, with

significant weights for rewards received in the past two trials (both

P50.001) and higher weights for the most recent trial than the

second most recent trial (P50.001), weights for Patient XG were

not significantly different from zero for even the most recent trial

(P4 0.3). In contrast, both Patient XG and control participants

showed this signature of reinforcement learning in action-value

learning (past two weights both P50.001 and t � 14 t � 2,

P50.001). Consistent with these regression models, a three-par-

ameter reinforcement-learning model explained choice behaviour

in the stimulus-value learning task significantly better than a

model with no learning in control participants while accounting

for the number of parameters in the models [likelihood ratio

test, all �2(2)411, P50.001], but not in Patient XG [likelihood

ratio test, �2(2) = 0.70, P = 0.70]. The reinforcement-learning

model explained choice behaviour in the action-value learning

task significantly better for both Patient XG and control partici-

pants [likelihood ratio test, all �2(2)4 11, P50.001]. We also

computed Bayesian Information Criterion (BIC) scores for the

two models, which penalize for model complexity. The reinforce-

ment-learning model was preferred by BIC (lower score) for all

control subjects for both tasks. For Patient XG, the three-param-

eter reinforcement learning model was preferred for the action-

value learning tasks (reinforcement learning model BIC = 753.29

versus null model BIC = 876.05) but not for the stimulus-value

learning task (reinforcement learning model BIC = 913.07 versus

null model BIC = 893.68). Further, Patient XG’s learning rate in the

three-parameter reinforcement learning model was significantly

lower than controls for stimulus-value learning [Patient XG,

� = 0.06, controls, � = 0.65 � 0.20, t(10) = �2.28, P50.01,

Fig. 4], but within the normal range for action-value learning

[Patient XG, � = 0.98, controls, � = 0.75 � 0.18, t(10) = 1.29,

P = 0.11, Fig. 4], and the difference in learning rate between

the two tasks was significantly greater in Patient XG than controls

[t(10) = 5.19, P50.001].

Discussion
In contrast to our initial hypothesis, Patient XG exhibited a surpris-

ing dissociation between stimulus-value and action-value learning.

In multiple tasks that required learning the reward contingencies

for different stimuli, including the Weather Prediction and

Probabilistic Selection Tasks originally used to demonstrate learn-

ing deficits in Parkinson’s disease (Knowlton et al., 1996; Frank

et al., 2004; Shohamy et al., 2004), Patient XG exhibited a total

deficit in absolute terms, with performance indistinguishable from

chance. The one exception to this pattern was the training phase

of the Probabilistic Selection Task, where Patient XG’s perform-

ance was at above-chance levels though still impaired relative to

controls—but how he achieved this level of performance was not
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consistent with stimulus-value learning. In contrast to his deficit in

learning stimulus values, Patient XG performed similarly to healthy

controls in several tasks that could be solved by learning the

reward contingencies for different actions (Glascher et al., 2009;

Rutledge et al., 2009). Patient XG’s performance was consistent

with reinforcement learning in action-value learning but not stimu-

lus-value learning, and the discrepancy in his learning rates for

action values versus stimulus values was significantly greater

than controls. Though we can only draw firm conclusions about

Patient XG’s learning in the domain of rewards/gains, his normal

performance in the Bait Game suggests that action-value learning

for punishments/losses is also intact.

This dissociation supports the idea that action-value and stimulus-

value learning depend on distinct neural substrates (Rudebeck et al.,

2009; Rangel and Hare, 2010; Camille et al., 2011; Padoa-

Schioppa, 2011). However, that this dissociation could arise from

damage concentrated in dorsal striatum is very surprising. Most

models posit a role for the dorsal striatum in learning action

values and the ventral striatum in learning stimulus values (Houk

et al., 1995; Niv, 2009). Supporting this role, neurophysiological

studies have identified single neurons in dorsal striatum that

encode action values or reward prediction errors that could be

used to learn action values (Samejima et al., 2005; Lau and

Glimcher, 2008; Kable and Glimcher, 2009; Ding and Gold, 2010;

Cai et al., 2011), suggesting that dorsal striatal damage would

impair action-value learning and leave stimulus-value learning intact.

How can we explain this surprising result? Lesion studies have

shown that ventromedial frontal regions are critical for stimulus-

value learning, while dorsomedial frontal regions are critical for

action-value learning (Rudebeck et al., 2009; Camille et al.,

2011). One possible explanation for the dissociation we observe

is that information from ventromedial frontal regions must pass

through frontal-striatal circuits to affect behaviour, while informa-

tion from dorsomedial frontal regions can affect behaviour directly

through connections to motor circuits. This idea is consistent with

anatomical evidence for an ascending flow of information through

frontal-striatal circuits (Haber and Knutson, 2010) and for the ex-

istence of a hyperdirect pathway from dorsomedial prefrontal

cortex to the subthalamic nucleus (Nambu et al., 2002).

Alternatively, a second possible explanation is that there is redun-

dancy in the systems available for learning action values that is not

present in the systems for learning stimulus values. Cortical path-

ways involving premotor cortex and posterior parietal cortex may

have access to motor and learning signals necessary to solve the

Figure 3 (A and C) Patient XG and healthy controls’ performance for the stimulus-value learning (A) and action-value learning tasks

(C), respectively. Plotted is the probability of choosing the richer option across the course of a block (averaging over 16 total blocks per

task, representing 14 total transitions). Vertical dashed line denotes block transition. Horizontal line denotes chance performance. Data

smoothing kernel = 11. (B and D) General linear model fit showing the influences of past rewards on learning for stimulus-value learning

(B) and action-value learning (D). Control fits in both tasks demonstrate the signature of reinforcement learning. However, Patient XG

only shows fits consistent with reinforcement learning in action-value learning, and not in stimulus-value learning.
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learning of action values (Romo and Salinas, 2003; Kable and

Glimcher, 2009). The cerebellum may also have access to the ne-

cessary signals (Doya, 1999; Medina, 2011). In either case, our

data show that structures outside the dorsal striatum are sufficient

to learn to discriminate between two simple actions.

Of course, a limitation of the current study is that Patient XG is

only a single case, though striking dissociations in single neuropsy-

chological cases have often advanced cognitive neuroscience

(Caramazza and McCloskey, 1988). In this case, we find evidence

for the necessity of the dorsal striatum for stimulus-value but not

action-value learning. The striking ability of Patient XG to learn

action values despite bilateral dorsal striatal damage should

prompt a careful reconsideration of current theories of striatal

function in reinforcement learning.
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