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ScienceDirect
In the last few years, neuroscientists have begun to identify

associations between individual differences in decision-making

and features of neuroanatomy and neurophysiology. Different

tendencies in decision making, such as tolerance for risk, delay

or effort, have been linked to various neurobiological measures,

such as morphometry, structural connectivity, functional

connectivity or the function of neurotransmitter systems.

Though far from immutable, these neural features may

nonetheless be suitable as relatively stable biomarkers for

different decision traits. The establishment of such markers

would achieve one of the stated goals of neuroeconomics,

which is to improve the prediction of economic behavior across

different contexts.
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Introduction
Several neuroeconomists have argued that neural mea-

sures may aid in predicting behavior, and even skeptics of

neuroeconomics agree that improved behavioral predic-

tions — if they arrive — would constitute a contribution

of neuroscience to economics [1–4]. Neuroeconomic

studies have already shown that neural activity can

improve predictions of simultaneous behavior and can

predict later choices involving the same stimuli [5–8].

However, predictions of behavior that are farther from the

context where the data were collected, in terms of stimuli

or time, would be even more impressive and also more

likely to be of practical use to economic questions [9].

One such practical purpose is to identify types of deci-

sion-makers [10,11]. Identifying and characterizing stable
Current Opinion in Behavioral Sciences 2015, 5:100–107 
individual differences would aid in predicting individual-

level behavior across many contexts. Properly accounting

for such heterogeneity would also enable better macro-

level predictions. For example, the outcomes of policy

changes may differ depending on the composition of the

population.

It is in the context of this potential promise of neuroe-

conomics that recent work identifying differences in brain

structure and function at ‘rest’ (i.e. without asking the

subject to perform any task) is particularly interesting.

Different forms of structural and functional imaging have

found individual differences in morphometry, structural

and functional connectivity, or resting neural activity [12–
14]. Such neural differences, because of how they are

measured and because of the features of the brain they

reflect, are likely to be less tied to a specific context and

fairly stable over time. Therefore, these neural measures

may be well-suited to identifying relatively stable indi-

vidual differences in decision making that predict behav-

ior across many different behavioral contexts. In other

words, though still early in development, these neurosci-

ence tools could prove to be very useful for the goals of

economists and other behavioral scientists.

Studies examining the relationship between these mea-

sures and cognitive ability have already been reviewed,

and this literature serves as a nice example of both the

promises and caveats of these techniques [15,16]. Here

we review studies that have used these techniques to

identify neural markers of individual differences in deci-

sion-making. We focus specifically on four different kinds

of measures: measures of cortical thickness, gray and

white matter density and volume from structural magnet-

ic resonance imaging (MRI); measures of structural con-

nectivity and white matter integrity from diffusion-tensor

imaging (DTI); measures of resting functional connectiv-

ity from functional MRI (fMRI); and positron emission

tomography (PET) measures of neurotransmitter trans-

porters and receptors.

Morphometry
MRI can measure the structure of different brain regions

and distinguish different tissue types such as gray matter,

white matter and cerebrospinal fluid. Statistical techni-

ques can be used to calculate the surface area or cortical

thickness of a particular region of the cortical sheet, or the

volume of gray or white matter at a particular location in

standardized brain space. These measurements can then

be related, across participants, to individual differences in
www.sciencedirect.com
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Figure 1
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The cortical volume of a region in posterior parietal cortex is predictive

of individual risk attitudes. Top: exploratory analysis revealed a

significant positive correlation between the volume of the highlighted

region (left) and risk tolerance (right) in a group of 28 individuals.

Bottom: the result was confirmed in an independent group of

participants, using a different scanner and a different behavioral task

to estimate risk attitudes. Gray matter volume in the same region

significantly predicted risk tolerance ( p < 0.05; left), while the volume

of a control region in the vicinity of the primary motor/somatosensory

cortex was not predictive of risk attitudes (right).

Adapted from [19��].
behavior [12]. Although structural measures are thought

to strongly rely on the specific properties of the scanner

and scanning sequence used, recent research has demon-

strated high test–retest reliability even between different

scanning sites [17]. An oft-used statistical technique in

this general family is called voxel-based morphometry

(VBM), which tests for associations across individuals

with gray and white matter volumes throughout the brain

[18].

We have previously used VBM to examine the neuroan-

atomical correlates of risk attitudes (Figure 1) [19��]. We

first characterized behaviorally each participant’s risk

tolerance, by using choices between gambles to estimate

the curvature of their utility function for money in an

expected-utility model. In an initial sample, greater risk

tolerance was associated with increased gray matter vol-

ume in posterior parietal cortex, a region previously

linked to decision making under risk in both human

and non-human primate studies [20,21]. We then repli-

cated this association in a second sample, demonstrating

the parietal gray matter volume was a significant predictor

of risk tolerance, over and above demographic variables

(age and sex).

Several studies have also examined the relationship be-

tween anatomical structure and delay discounting, the

tendency to discount delayed rewards relative to imme-

diate ones. The extent of discounting is typically charac-

terized by the discount rate, which is estimated from

choices between immediate and delayed rewards. The

structure of prefrontal regions, the basal ganglia and the

medial temporal lobe have all been implicated in dis-

counting, though these associations are inconsistent

across studies. Using VBM or other volumetric

approaches, four studies examined single, relatively

small, samples (n = 13–34) and focused on specific regions

of interest. Bjork et al. (2009) found that greater gray

matter volume in lateral prefrontal cortex was associated

with reduced discount rates [22]. Cho et al. (2013) found

that greater gray matter volume in medial prefrontal

regions was associated with increased discount rates,

while greater gray matter volume in putamen was associ-

ated with decreased discount rates [23]. Dombrovski et al.
(2012) observed a similar association in the putamen in a

sample of elderly suicide attempters, though they did not

see the same association in a comparison sample of elderly

depressed [24]. Using a task where the immediate reward

was presented visually and the delayed reward verbally

(therefore requiring visualization), Lebreton et al. (2013)

found an association between greater hippocampal vol-

ume and reduced discounting; this association was spe-

cific to that condition and did not hold when the two

rewards were presented in the same format [25]. Unfor-

tunately, the two studies that have performed whole brain

volumetric searches in larger samples (n > 100) have also

yielded mixed results. In a combined sample of healthy
www.sciencedirect.com 
and methamphetamine-dependent individuals, greater

discounting was associated with increased gray matter

volume in posterior cingulate and putamen and decreased

gray matter volume in superior frontal gyrus [26]. A

similar study in a completely healthy sample did not find

any associations with gray matter volume, but did find

associations with prefrontal and medial temporal white

matter volumes [27]. The two studies using surface-based

morphometric approaches are similarly mixed. Bernhardt

et al. (2014) found that greater discounting was associated

with decreased cortical thickness in an area of medial

prefrontal cortex [28] defined from a previous fMRI study

on delay discounting [29]. However, Drobetz et al. (2014)

did not find any associations at corrected whole-brain

thresholds [30], though they observed some associations

in the lateral and medial prefrontal regions when applying

a liberal threshold ( p < 0.05 uncorrected). Whether these

inconsistencies in associations across studies are due to

issues of statistical power, to differences of the applied
Current Opinion in Behavioral Sciences 2015, 5:100–107
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Figure 2
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White matter tracts associated with age and learning. (a–d) White

matter tracts in a representative subject between the VTA-NAcc (a),

NAcc-DMThal (b), DMThal-MPFC (c), and MPFC-NAcc (d) and

corresponding scatter plots across participants. The thalamocortical

(c) and corticostriatal (d) tracts were associated with both age (N = 25)

and learning (N = 22). (e) A combined measure of

thalamocorticostriatal (TCS) white matter integrity mediated age

differences in reward learning.

Reprinted from [37��].
morphometric techniques, or to true heterogeneity in the

effects across different populations is unclear.

Structural connectivity
Other aspects of neuroanatomical structure can be

assessed with diffusion tensor imaging (DTI) [31,32].

DTI measures the diffusion of water molecules. In gray

matter or CSF, this diffusion occurs uniformly in all

directions, but in white matter, this diffusion is restricted

by the directionality of the fiber pathways containing the

axonal connections between brain regions. DTI measures

the diffusion tensor, the extent of diffusion in each

direction, in each point in space. Common summary

properties that can be calculated include fractional an-

isotropy (FA), an index of the non-uniformity of diffusion,

and mean diffusivity (MD), a measure of mean diffusion

across all directions. Higher FA and lower MD are gen-

erally associated with greater white matter ‘integrity’.

The diffusion tensor in each voxel can also be used to

deterministically or probabilistically reconstruct the fiber

pathways between brain regions. Similar to morphological

measures, DTI measures show high test–retest reliability

[33].

The integrity of connections between the frontal cortex

and striatum has been linked to reduced delay discount-

ing and to improved learning from rewards and punish-

ments. Using probabilistic tractography, van den Bos et al.
(2014) found that the extent of delay discounting was

negatively correlated with the strength of tracts from the

dorsolateral prefrontal cortex to striatum and positively

correlated with the strength of tracts from the amygdala to

striatum [34��]. These findings held both in an original

sample and a replication sample, and the strengths of

these tracts were further associated with strength of

functional connectivity during an intertemporal choice

paradigm. The corticostriatal finding is consistent with a

previous study that investigated the integrity of the entire

frontal cortical–striatal tract and found an association

between higher FA and lower MD in this tract and lower

discounting [35], as well as with an earlier voxel-based

study that found an association between lower discount-

ing and higher FA and lower MD in white matter under-

lying right lateral prefrontal regions [36].

The integrity of another corticostriatal tract, from medial

prefrontal cortex to ventral striatum, has been associated

with age-related individual differences in learning

(Figure 2) [37��]. In this study, participants had to learn

to select the stimulus with a greater probability of reward

or with a lesser probability of punishment. Participants

differed in their ability to learn these associations, and

younger participants exhibited better learning. Greater

FA within the tract from the dorsomedial thalamus to the

medial prefrontal cortex and within the tract from the

medial prefrontal cortex to the ventral striatum was
Current Opinion in Behavioral Sciences 2015, 5:100–107 www.sciencedirect.com
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associated with better learning, and the integrity of these

tracts fully mediated the effects of age on learning.

Functional connectivity
In addition to anatomical markers, functional neural

properties can also be predictive of individual personality

traits and cognitive abilities. In the last two decades,

blood oxygenation level dependent (BOLD) functional

MRI has been increasingly used to assess intrinsic func-

tional connectivity patterns [38]. Intrinsic functional con-

nectivity is typically examined during ‘resting-state’

fMRI scans, in which participants lie passively in the

MRI scanner, are not exposed to external stimulation and

are not asked to perform any task. The technique is based

on the observation that spontaneous fluctuations in the

BOLD signal result from intrinsic neuronal activity [39]

and that these fluctuations exhibit spatial correlation

patterns that largely reflect the underlying structural

connectivity [40]. The test–retest reliability of resting-

state functional connectivity is not fully known, but is

expected to be lower than that of the structural measures.

This is because in addition to scanner noise, functional
Figure 3
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measures are highly sensitive to physiological noise,

including cardiac, respiration and head-motion artifacts.

Still, recent examinations have shown moderate to high

reliability of several resting state measures [41,42].

Recent studies have examined the possible associations

between functional connectivity and individual decision

traits. The common approach to these questions is to

compute the coherence between signals obtained from

predefined regions of interest, or between a particular

‘seed’ region and the rest of the brain, during spontaneous

activity [13]. The regions of interest are typically selected

based on their involvement in decision-making processes,

as inferred from task-based fMRI studies. The computed

coherence measurements are then examined for potential

associations with behavioral characteristics that are mea-

sured outside of the scanner in experimental tasks or

based on self-report questionnaires.

Using this approach, several studies have identified asso-

ciations between functional connectivity measures and

discounting of future rewards (Figure 3). These studies

documented a positive correlation between the degree of
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out analysis was used, in which the resting state data of the left-out

d from other participants to predict the discounting rate of the left-out

d on the leave-one-out analysis. (c) Confirmation in an independent

Current Opinion in Behavioral Sciences 2015, 5:100–107
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Figure 4
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DA responses predict proportion of high effort choices. (a and b)

Highlighted voxels showed significant positive correlation between

proportion of high-effort choices during low-probability trials and DA

responses in left caudate and vmPFC (a), as well as left vlPFC and

temporal cortex. (c and d) Scatter plot of proportion of high-effort

choices during low-probability trials and DA responses in vmPFC (c)

and left caudate (d).

Reprinted from [55��].
delay discounting and the strength of functional connec-

tivity among components of the valuation network

[43��,44]. Such positive association was observed with

the connectivity between the ventral striatum (VS) and

the ventromedial prefrontal cortex (vmPFC) both in

adults [43��] and in children [45]. Positive association

was also observed with the functional connectivity be-

tween the dorsal anterior cingulate cortex (dACC) and the

anterior insula [43��], between dACC and dopaminergic

midbrain structures [46], and between fronto-insular cor-

tex and vmPFC [47]. Conversely, there is evidence for

negative correlation between delay discounting and the

functional connectivity among lateral parietal and pre-

frontal regions, which have been implicated in the choice

process [43��]. While these findings cannot inform us

about causal direction, they are consistent with the notion

that weakened coupling between regions that have been

implicated in self-control, such as the dACC and lateral

prefrontal cortex (lPFC), and reward-related structures

may increase preference for immediate rewards.

Positron emission tomography (PET)
Finally, positron emission tomography (PET) is also

used to examine possible associations between brain

function and behavioral traits. Using radioactive tracers

PET imaging can track the distribution of various chem-

ical compounds in different regions of the brain. This

allows researchers to estimate the levels of specific

neurotransmitters that are thought to be involved in

particular behaviors. In the context of decision-making,

dopamine, which has been implicated in reward and

motivation, and specifically in encoding reward predic-

tion errors that drive reinforcement learning [48] is of

especially high interest. While dopamine levels cannot

be directly measured, PET studies of dopamine rely on

indirect measures, usually by labeling dopamine recep-

tors, dopamine transporters or precursors of dopamine

[49].

As can be expected, higher baseline striatal dopamine

synthesis was associated with relatively better learning

from unexpected rewards compared to unexpected pun-

ishments [50] as well as with better working memory [51].

Several studies have used the binding potential of

[18F]fallypride, a D2/D3 selective ligand that labels stria-

tal and extrastriatal receptors, as an indicator for receptor

availability, a technique that has shown high test–retest

reliability [52]. These studies have also utilized oral

administration of d-amphetamine (AMPH), comparing

receptor availability on AMPH and placebo as a measure

for AMPH-induced dopamine release. In one of these

studies, impulsivity measured by a widely used self-

report questionnaire (the Barratt Impulsiveness Scale,

BIS-11; [53]), was negatively correlated with receptor

availability in the substantia nigra/ventral tegmental area

and positively correlated with the induced dopamine

release in the striatum [54].
Current Opinion in Behavioral Sciences 2015, 5:100–107 
Treadway et al. [55��] extended this approach to examine

cost-benefit decision-making, where participants were

asked to choose between exerting low physical effort

for a small reward or high physical effort for a larger

reward (Figure 4). They found that individual differences

in dopamine function in left striatum and vmPFC were

correlated with a willingness to expend more effort for

larger rewards, especially when the reward probability

was low, while variability in dopamine responses in

bilateral insula negatively correlated with willingness to

expend effort.

Challenges and future directions
In interpreting all of these results, it is important to

remember two caveats. First, all of the studies we have

reviewed are cross-sectional. This means that we do not

know how these neuroanatomical or neurophysiological

differences developed. We do not know whether these

differences preceded differences in decision making or

followed from them (i.e. the association is consistent with

both directions of causality), and we certainly do not know

the extent to which these differences are innate, fixed or

unchangeable. The existing data suggest that all of the

neural measures we have discussed are malleable and can

change with experience [56–62], and that their relation-

ship with behavior can exhibit a complex developmental

timecourse [63].

Second, many of the findings we have discussed above

have yet to be independently replicated. There is grow-
www.sciencedirect.com
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ing recognition of the importance of replicability, in

psychology and in the biological sciences in general

[64–66]. For the goal of prediction, identifying neurobio-

logical markers that are both replicable and generalizable

across samples will be critical. This goal will be speeded

as investigators increasingly collect and build large data-

sets. Functional connectivity datasets with sample sizes

in the hundreds already exist [38] and the human con-

nectome project aims to collect a similarly large sample of

structural (T1) and structural connectivity (DTI) mea-

sures [67].

The findings reviewed here do provide ‘proof-of-princi-

ple’ that neurobiological correlates of individual differ-

ences in decision-making can be identified, and we are

optimistic that at least some of these differences will

prove both reliable and generalizable. As this research

area matures, we see at least two priorities. First, a wider

variety of decision-making dimensions should be investi-

gated. For example, differences in risk and ambiguity

aversion, loss aversion, social preferences, strategic rea-

soning, and many other areas have yet to be fully ex-

plored. Second, few investigators have formally shown

that brain metrics can predict decision behavior

[19��,43��] and no one (to the best of our knowledge)

has yet shown that task-independent brain metrics can

improve the prediction of decision-making over-and-

above behavioral measures alone. This is especially im-

portant given the relative cost of neuroimaging compared

to traditional behavioral measures (though in some cases

the neuroimaging measures may already be available). A

few recent studies have shown that task-related function-

al brain activation can improve prediction over the current

behavioral ‘gold standard’, for example in the context of

the persuasive messaging [68]. Only when this last crite-

rion has been reached will neuroeconomists have

achieved the goal of improving economic prediction.
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